HashMap源码解析
默认的常量
1
2
3
4
5
6
7
8
9
10//创建 HashMap 时未指定初始容量情况下的默认容量 16
static final int DEFAULT_INITIAL_CAPACITY = 1 << 4;
//HashMap 的最大容量 2^30
static final int MAXIMUM_CAPACITY = 1 << 30;
//HashMap 默认的装载因子,当 HashMap 中元素数量超过容量装载因子时,进行 resize() 操作
static final float DEFAULT_LOAD_FACTOR = 0.75f;
//链表转红黑树的阈值
static final int TREEIFY_THRESHOLD = 8;
//用来确定何时将解决 hash 冲突的红黑树转变为链表
static final int UNTREEIFY_THRESHOLD = 6;存储结构
内部包含了一个 Node 类型的数组 table。观察 Node 可以发现table是一个链表1
2
3
4
5
6
7/**
* The table, initialized on first use, and resized as
* necessary. When allocated, length is always a power of two.
* (We also tolerate length zero in some operations to allow
* bootstrapping mechanics that are currently not needed.)
*/
transient Node<K,V>[] table;Node 存储着键值对。它包含了四个字段,从 next 字段我们可以看出 table 是一个链表。即数组中的每个位置被当
成一个桶,一个桶存放一个链表。HashMap 使用拉链法来解决冲突,同一个链表中存放哈希值和散列桶取模运算结
果相同的 Ndoe.1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39static class Node<K,V> implements Map.Entry<K,V> {
final int hash;//保存节点的hash值
final K key;//保存节点的key值
V value;//保存节点的value值
Node<K,V> next;//指向链表结构下的当前节点的 next 节点,红黑树 TreeNode 节点中也有用到
Node(int hash, K key, V value, Node<K,V> next) {
this.hash = hash;
this.key = key;
this.value = value;
this.next = next;
}
public final K getKey() { return key; }
public final V getValue() { return value; }
public final String toString() { return key + "=" + value; }
public final int hashCode() {
return Objects.hashCode(key) ^ Objects.hashCode(value);
}
public final V setValue(V newValue) {
V oldValue = value;
value = newValue;
return oldValue;
}
public final boolean equals(Object o) {
if (o == this)
return true;
if (o instanceof Map.Entry) {
Map.Entry<?,?> e = (Map.Entry<?,?>)o;
if (Objects.equals(key, e.getKey()) &&
Objects.equals(value, e.getValue()))
return true;
}
return false;
}
}TreeNode<K,V> 继承 LinkedHashMap.Entry<K,V>,用来实现红黑树相关的存储结构
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23static final class TreeNode<K,V> extends LinkedHashMap.Entry<K,V> {
TreeNode<K,V> parent; // 存储当前节点的父节点
TreeNode<K,V> left; //存储当前节点的左孩子
TreeNode<K,V> right; //存储当前节点的右孩子
TreeNode<K,V> prev; // 存储当前节点的前一个节点
boolean red; // 存储当前节点的颜色(红、黑)
TreeNode(int hash, K key, V val, Node<K,V> next) {
super(hash, key, val, next);
}
TreeNode(int hash, K key, V val, Node<K,V> next) {
super(hash, key, val, next);
}
/**
* Returns root of tree containing this node.
*/
final TreeNode<K,V> root() {
for (TreeNode<K,V> r = this, p;;) {
if ((p = r.parent) == null)
return r;
r = p;
}
}HashMap的结构
- 拉链法的工作原理. 新建一个 HashMap,默认大小为 16;
1
2
3
4HashMap<String, String> map = new HashMap<>();
map.put("K1", "V1");
map.put("K2", "V2");
map.put("K3", "V3");
. 插入 <K1,V1> 键值对,先计算 K1 的 hashCode 为 115,使用除留余数法得到所在的桶下标 115%16=3。
. 插入 <K2,V2> 键值对,先计算 K2 的 hashCode 为 118,使用除留余数法得到所在的桶下标 118%16=6。
. 插入 <K3,V3> 键值对,先计算 K3 的 hashCode 为 118,使用除留余数法得到所在的桶下标 118%16=6,插在<K2,V2> 前面。
注意:应该注意到链表的插入是以头插法方式进行的,例如上面的 <K3,V3> 不是插在 <K2,V2> 后面,而是插入在链表头
部
查找需要分成两步进行:
计算键值对所在的桶;
在链表上顺序查找,时间复杂度显然和链表的长度成正比。
- put操作确定桶下标的最后一步是将 key 的 hash 值对桶个数取模:hash%capacity,如果能保证 capacity 为 2 的 n 次方,
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25public V put(K key, V value) {
if (table == EMPTY_TABLE) {
inflateTable(threshold);
}
// 键为 null 单独处理
if (key == null)
return putForNullKey(value);
int hash = hash(key);
// 确定桶下标
int i = indexFor(hash, table.length);
// 先找出是否已经存在键为 key 的键值对,如果存在的话就更新这个键值对的值为 value
for (Entry<K,V> e = table[i]; e != null; e = e.next) {
Object k;
if (e.hash == hash && ((k = e.key) == key || key.equals(k))) {
V oldValue = e.value;
e.value = value;
e.recordAccess(this);
return oldValue;
}
}
modCount++;
// 插入新键值对
addEntry(hash, key, value, i);
return null;
}
那么就可以将这个操作转换为位运算。1
2
3static int indexFor(int h, int length) {
return h & (length-1);
}
HashMap 允许插入键为 null 的键值对。但是因为无法调用 null 的 hashCode() 方法,也就无法确定该键值对的桶下
标,只能通过强制指定一个桶下标来存放。HashMap 使用第 0 个桶存放键为 null 的键值对。
1 | private V putForNullKey(V value) { |
使用链表的头插法,也就是新的键值对插在链表的头部,而不是链表的尾部。
1 | void addEntry(int hash, K key, V value, int bucketIndex) { |
- 扩容-基本原理
设 HashMap 的 table 长度为 M,需要存储的键值对数量为 N,如果哈希函数满足均匀性的要求,那么每条链表的长
度大约为 N/M,因此平均查找次数的复杂度为 O(N/M)。
为了让查找的成本降低,应该尽可能使得 N/M 尽可能小,因此需要保证 M 尽可能大,也就是说 table 要尽可能大。
HashMap 采用动态扩容来根据当前的 N 值来调整 M 值,使得空间效率和时间效率都能得到保证。
和扩容相关的参数主要有:capacity、size、threshold 和 load_factor。
从下面的添加元素代码中可以看出,当需要扩容时,令 capacity 为原来的两倍。
1 | void addEntry(int hash, K key, V value, int bucketIndex) { |
扩容使用 resize() 实现,需要注意的是,扩容操作同样需要把 oldTable 的所有键值对重新插入 newTable 中,因此
这一步是很费时的。
1 | void resize(int newCapacity) { |
- 扩容-重新计算桶下标
在进行扩容时,需要把键值对重新放到对应的桶上。HashMap 使用了一个特殊的机制,可以降低重新计算桶下标的操作。
假设原数组长度 capacity 为 16,扩容之后 new capacity 为 32:
capacity : 00010000
new capacity : 00100000
对于一个 Key,
它的哈希值如果在第 5 位上为 0,那么取模得到的结果和之前一样;
如果为 1,那么得到的结果为原来的结果 +16。
- 计算数组容量
HashMap 构造函数允许用户传入的容量不是 2 的 n 次方,因为它可以自动地将传入的容量转换为 2 的 n 次方。
先考虑如何求一个数的掩码,对于 10010000,它的掩码为 11111111,可以使用以下方法得到:
1 | mask |= mask >> 1 11011000 |
- 链表转红黑树
从 JDK 1.8 开始,一个桶存储的链表长度大于 8 时会将链表转换为红黑树。